ClickHouse ¥ E 5| &R 1%

About Me

Pomin Wu

pm5@gO0v.social

EHREHE. . BEX. RBALSES.
REEARAMEHREERES,

N

2 g0v FRBMAFAREBEFLE, 2 90v BIRRF/MELRIZEEA,
BRI E FRZEEERTIEM,

We are hiring
Taipei Office

System Administrator

System & Reliability Engineer
Spam and Abuse Analyst
Front-End / Back-End / Full-stack
Machine Learning Engineer
Technical Support Specialist

Proton l Privacy by default

~roton

Proton Mail

Proton Calendar
Proton Drive

ProtonVPN
B Proton Bridge

ClickHouse

https://clickhouse.com/

FJR OLAP Bl [E

I”l' ClickHouse Product v Docs Use Cases Company v
Column-oriented
o o= About ClickHouse
EE R

Blazing fast Linearly scalable Fault tolerant
4 E Il ot lumn-oriented dat both hor tally and
ent systems

Hardware efficient Feature-rich
Pro ytical que ter than Purely distrik e er-friendly SQL query d ct, built-in
tradit e y enterpri

See all features —

https://clickhouse.com/

ClickHouse

— (& F R/ F SELECT
toStartOfMinute(timestamp) AS ts,
e data_table R7F—Lt log % &k count(*)
o timestamp 2 log HIBERI ERESIF) FROM data_table
o ¥(F data table X% 2.6TB WHERE timestamp BETWEEN ...
. s : GROUP BY ts
e timestamp ;Z2F I index
4 B
e A index, ... rows in set. Elapsed: 1.684
o TUBEHMEM W EHEESEMEEN, sec. Processed 9.59 billion rows,

38.37 GB (5.76 billion rows/s.,
22.78 GB/s.)

ClickHouse

GitHub - ClickHouse/ClickHouse
https://github.com/ClickHouse/ClickHouse

Overview of ClickHouse Architecture
https://clickhouse.com/docs/en/development/architecture/

GitHub - ClickHouse/clickhouse-presentations
https://github.com/ClickHouse/clickhouse-presentations

Altinity, Inc. - YouTube
https://www.youtube.com/c/AltinityLtd

https://github.com/ClickHouse/ClickHouse
https://clickhouse.com/docs/en/development/architecture/
https://github.com/ClickHouse/clickhouse-presentations
https://www.youtube.com/c/AltinityLtd

Storages

S tree -P '*.h' -L 1 src/Storages/
src/Storages/

IStorage.h

StorageJoin.h
StoragelLog.h

StorageMaterializedMySQL.h
StorageMaterializedView.h
StorageMemory.h

StorageMongoDB.h
StorageMySQL .h
StorageNull.h
StoragePostgreSQL.h

StorageS3.h

// src/Storages/IStorage.h

|IStorage virtual void read(
QueryPlan & query_plan,
const Names & /*column_names*/,

Storage engines in ClickHouse has an const StorageSnapshotPtr & /*storage_snapshot*/,

interface IStorage defined in SelectQueryInfo & /*query_info*/,
src/Storages/IStorage.h. ContextPtr /*context*/,
QueryProcessingStage: :Enum /*processed_stage*/,
The most important methods are read size_t /*max_block_size*/,
and write. unsigned /*num_streams*/);
write returns a SinkToStoragePtr, virtual SinkToStoragePtr write(
which points to a SinkToStorage. const ASTPtr & /*query*/,
const StorageMetadataPtr & /*metadata_snapshot*/,
Storages extend SinkToStorage to ContextPtr /*context*/)
implement their own sink to handle
writing data. throw Exception("Method write is not supported by

storage " + getName(), ErrorCodes::NOT_IMPLEMENTED) ;
More on “what’s a sink” later. }

|Storage void TStorage::read (QueryPlan ¢ query plan, c
cons shotPtr & storage snapshot,
query info, xtPtr context, y

processed stage, s t max block size, unsigned num_streams)

(Public) read calls (private) read to (
create a Pipe, which is used to create a -
ReadFromSto rageStep, which is then 7 readFromPipe (query plan, std::move (pipe), column names,
added to query_plan. storage snapshot, query info, context, getName ());

pipe = read(column names, storage snapshot, query info,

rocessed stage, max block size, num streams);

::readFromPipe ‘yPlan & query plan, i pipe,
column names, T otPtr & storage snapshot,

query info, ntextPtr context, std

: :make unique<] d::move (pipe), storage name,

query info.storage limits);

query plan.addStep (s :move (read step)) ;

|IStorage

One of the interesting things about ClickHouse is that it supports many kinds of
storage engine.

Merge tree family is the most common ones, but also StorageMemory,
StorageFile, StorageMySQL, StoragePostgreSQL, StorageSQLite,
StorageDistributed, etc.

This probably shows that ClickHouse has a lot of optimizations that are applicable
regardless of the underlying storage engine implementation.

StorageMemory

(Now public) StorageMemory: :read
produces a Pipe. This Pipe is
composed of num_streams of
MemorySource.

IStorage: :write returns a point to
an SinkToStorage. The one returned
from StorageMemory: :writeis
MemorySink.

MemorySource and MemorySink are
the places where data read and write
actually happens.

column names const StorageSnapshotPtr

if (num_streams >

num_st

parallel execution index = std::make shared<std::atomic<size t>>(0);

r (51:£7t stream = 0; stream < num_streams ; ++stream)

ce back (s ::make shared rce> (column names,

, current data, parallel e

>::unitePipes (std:

, ContextPtr context)

is, metadata snapshot, context):;

StorageMemory

Many of the storages of ClickHouse implement their own sources and sinks.

There are MergeTreeSequentialSource and MergeTreeSink,
MemorySource and MemorySink, KafkaSource and KafkaSink, etc.

We will soon explain what sources and sinks are for ClickHouse.

StorageMemory

The main methods of concern in the
case of memory storage are
MemorySource: :generate and
MemorySink: :consume.

MemorySource: :generate creates a
Block out of the indexed data, get a
Columns out of it, and store that in the
Chunk to be returned.

Chunk MemorySource: :generate () override

Block & src = (*data) [current index];

mns columns;
£ num columns = column names and types.size();

columns.reserve (num_columns) ;

auto name and type = column names_ and types .begin();
for (size t i = 0; i < num columns; ++i)
{
columns.emplace back (tryGetColumnFromBlock (src,
*name and type));
++name and type;

}

fillMissingColumns (columns, src.rows (), column names and types,
nullptr) ;

',(stc::all_of(columns.begin(), columns.end (), [] (const

auto & column) { return column != nullptr; }));

return Chunk (std::move (columns), src.rows()):;

StorageMemory i e meen v,

k (block,

columns .en

MemorySink: :consume stores the
Chunk input in new_blocks.

d block);

s .emplace_back (block) ;

StorageMemory o aneians a0 e

t inserted bytes = 0;

ze t inserted rows = 0;

And in MemorySink: :onFinish,
acquires a lock and writes data to

for (const auto & block : new blocks)
{
StO rage. insertedibytes += block.allocatedBytes () ;

inserted rows += block.rows();

::lock guard lock(storage.mutex);

auto new data =

i::make_unique<B s> (* (storage.data.get ()))

new data->insert (new_data->end (), new blocks.begin(),
new blocks.end());

storage.data.set (std: :move (new _data));

storage.total size bytes.fetch add(inserted bytes,

storage.totalisizeirows.fetchiadd(insertedirows,

:memory order =~d) ;

Wrap up

Chunk is the unit of data processing in ClickHouse.

Storage engines implement their sources and sinks, to read and write data in
chunks.

Processors

S tree -L 1 -P '*.h' src/Processors
src/Processors

— Chunk.h

— Executors

— ForkProcessor.h

— Formats

— IAccumulatingTransform.h
— IProcessor.h

— ISimpleTransform.h

— ISink.h

— ISource.h

— Port.h

— QueryPlan

— Sinks

— Sources

L Trancecfarme

|IProcessor

An IProcessor has input and output MLl R U,
portS OutputPorts outputs;

public:
IProcessor () = default;

Sources and sinks and transforms are
a” IProcessorS- IProcessor (InputPorts inputs , OutputPorts outputs)

: inputs (std::move (inputsi)), outputs (std::move (outputs))

It can read from input ports, write to
output ports, and transform the data for (auto & port : inputs)
W|th Work. port.processor = this;

for (auto & port : outputs)
prepare is not thread-safe. work is port.processor = this;
thread-safe.

Status prepare() ;

d work () ;

Sources, transforms, and sinks is a . :

. Cue t schedule () ;
common pattern in data flow or stream virtual Pro e cpenaRtpaline () p
processing systems.

POI | Chu npu :pull (bool set not needed

rt::push (Chunk chunk) ;

. 7oid connect (OutputPort & output, InputPort & input)
An InputPort is connect to an
if (input.state)
OutputPort. * —
LOGICAL ERROR, "Port i
1)", input.header.dumpStructure ());

A connected pair of ports act like a
shared lock over the shared
Port: :State between the ports.

tProcessor () .getName () ;
uto in name = input.g rocessor () .getName () ;
assertCompatibleHeade O getHeader (), input.getHeader (),

fmt::format (" function w {} and {}", out name, in name));

input.output port = &output;

output.input port = &input;

i
input.state = std::make shared<Port

output.state = input.state;

Block

Let's take a quick look at Chunk and
Block.

*column is where the data is actually
stored.

*type is an IDataType and all data
types are defined in src/DataTypes.

So a Block is basically a vector of
columns all having their data, type, and
name.

using Container = ColumnsWithTypeAndName;

using IndexByName = std::unordered map<String,

size t>;

b

Container data;

IndexByName index by name;

struct ColumnWithTypeAndName

{

ColumnPtr column;
DataTypePtr type;

String name;

Chunk

A Chunk is like a Block without data
type info.

priv
Columns columns;

UInt64 num rows = 0;

ChunkInfoPtr chunk info;

L

using Columns = std::vector<ColumnPtr>;

|ISimpleTransform e

if (input_data .exception)
{
{

output data std::move (input_data);

f

ISimpleTransform are the simplest
transforms.

They have one input port, one output ,
port. .chunk, output data .chunk) ;

A” tranSfO rmS are In ou data .exception = std::current_ exception ();
src/Processors/Transforms/.

Examples are LimitTransform which
implements LIMIT,
ExtremesTransform which
implements EXTREMES in SQL.

dInputData () ;

unks || output_data .chunk)

y () .getColumns (),

. . . :) EXPLAIN PIPELINE SELECT 1 LIMIT 10
Explain pipeline

Query id: 1f586ac5-ba6bd-4cc8-abc4-9dae2bff6998

You can see how your query is
translated to transforms with
EXPLAIN PIPELINE.
(SettingQuotaAndLimits)
(Limit)
Limit

(ReadFromStorage)

SourceFromSingleChunk 6 - 1

ExtremesTransform

Since we are working with Chunk here,
with ISimpleTransform: :prepare,
it can actually do a lot more than “map”.

For example, in ExtremesTransform

1. Adds a new port to store the
extremes upon creation,

2. Calculate extremes (a Chunk) in
ExtremesTransform: :transf
orm, and

3. Use
ExtremesTransform: :prepar
e to push the extremes to the new
port.

s ::Finished)

finished transform =

& totals output = getExtre

ExtremesTransform

For example, ExtremesTransform

1. Adds a new port to store the
extremes upon creation,

2. Calculate extremes (a Chunk) in
ExtremesTransform::transf
orm, and

3. Use
ExtremesTransform: :prepar
e to push the extremes to the new
port.

Wrap up

The pipeline consists of processors, connected with ports.

Processor and port methods work with chunks.

S tree -L 1 -P '"*.h' src/QueryPipeline
src/QueryPipeline
. . — BlockIO.h
QueryPipeline S
— ...
— Pipe.h
— ProfileInfo.h
— QueryPipelineBuilder.h
— QueryPipeline.h

— ...

QueryPlan

All of these needs to be tied together! ina QueryPipelineBuilderPtr buildQueryPipeline (
QueryPipeline in ClickHouse. SOnSTE OV EICRiE L 2e e e

optimization settings,

. . st BuildQueryPipelin
Recall in IStorage: : read where a Pipe ————
to source is added to query_plan with

QueryPlan: :addStep.

build pipeline settings);

1StepPtr step;

The step being added is a yr<Node *> children = {};
ReadFromStorageStep, which is a
IQue I‘yPlanStep. s std::1ist<Node>;

Steps are added to the QueryPlan, and
QueryPlan: :buildQueryPipeline will m———

build a QueryPipeline using a * root = nullptr;
QueryPipelineBuilder.

esourceHolder resources;

Explain plan

There are many of these steps in
src/Processors/QueryPlan.

You can see how your query is
translated to transforms with EXPLAIN

PLAN.

1) EXPLAIN PLAN SELECT 1 LIMIT 10
EXPLAIN

SELECT 1

LIMIT 10

Query id: b1f7c¢731-4d60-49cf-8fb6-2c8ba9e54143

—explain
| Expression ((Projection + Before ORDER BY)) |

\ SettingQuotaAndLimits (Set limits and quota after reading from storage) |
\ Limit (preliminary LIMIT (without OFFSET))

ReadFromStorage (SystemOne)
. @@ OO @ @@ @ @ @ @@ @ @@ @ @ @O0 E—

QueryPipeline

initialized () cons return

QueryPipeline consists of all the
IProcessors connected with Ports bool pulling () const { return output
that We JUSt SaW bool pushing () const ~eturn input !

completed () const return initialized () 'pulling () !'pushing (); }

pr

* input =

S tree -L 1 -P '*.h' src/Processors/Executor
src/Processors/Executors

—— CompletedPipelineExecutor.h

—— ExecutingGraph.h

—— ExecutionThreadContext.h

—— ExecutorTasks.h

—— IReadProgressCallback.h

—— PipelineExecutor.h

ExeCUtO rS : Eﬁiﬁﬂggg;ﬁglsgpelineExecutor.h

—— PullingPipelineExecutor.h

—— PushingAsyncPipelineExecutor.h
—— PushingPipelineExecutor.h

—— StreamingFormatExecutor.h

—— TasksQueue.h

—— ThreadsQueue.h

—— traverse.h

L— UpgradablelLock.h

Executor

icit PushingPipelineExecutor (QueryPipeline & pipeline);

QueryPipeline is used by executors. void push (Chunk chunk);

id push (k block) ;

As you can see there are many
executors.

cline & pipeline;
executor;

Synchronous executors like

PushingPipelineExecutor and void PushingPipelineExecutor ::push (Chunk chunk)

PullingPipelineExecutor all use if (Istarted)

PipelineExecutor: :executeStep. e

pushing source->setData (std::move (chunk)) ;

if (!executor->executeStep (&input wait flag))

throw

finished before al
}

Executor

Asynchronous executors like
PushingAsyncPipelineExecutor
and

PullingAsyncPipelineExecutor
work differently.

PullingPipeline

Pullin
pull (Chunk
pull (Block

or

::pull (Chunk

chunk)

Executor

PipelineExecutor build an
ExecutingGraph and runs the graph
in steps.

The graph nodes are IProcessors
with execution status and locks, and the
edges are the connected Ports.

, input port

t output port number ,

rt number),

update list;

output port number (output port number

ExecutingGraph

PipelineExecutor build an
ExecutingGraph and runs the graph
in steps.

The graph nodes are IProcessors
with execution status and locks, and the
edges are the connected Ports.

PipelineExecutor A ————

PipelineExecutor executes the
graph in multithreads.

Wrap up

QueryPlan consists of IQueryPlanSteps.
Interpreter build a QueryPipeline from QueryPlan.

PipelineExecutor build an ExecutingGraph from QueryPipeline, then
executes the steps.

